
Optimization of RocksDB for Redis on Flash

Keren Ouaknine
Hebrew University

Givat Ram Jerusalem
9190401 Israel

ouaknine@cs.huji.ac.il

Oran Agra
Redis Labs

Habarzel 28 Tel-Aviv
6971040 Israel

oran@redislabs.com

Zvika Guz
Samsung Semiconductor

3655 N 1st st. San Jose CA
95134 USA

zvika.guz@samsung.com

ABSTRACT
RocksDB is a popular key-value store, optimized for fast storage.
With Solid-State Drives (SSDs) becoming prevalent, RocksDB
gained widespread adoption and is now common in production set-
tings. Specifically, various software stacks embed RocksDB as a
storage engine to optimize access to block storage. Unfortunately,
tuning RocksDB is a complex task, involving many parameters
with different degrees of dependencies. As we show in this pa-
per, a highly tuned configuration can improve performance by an
order of magnitude over the baseline configuration.

In this paper, we describe our experience optimizing RocksDB for
Redis-on-Flash (RoF) – a commercial implementation of the Redis
in-memory key-value store that uses SSDs as RAM extension to
dramatically increase the effective per-node capacity. RoF stores
hot values in RAM, and utilizes RocksDB to store and manage
cold data on SSD drives. We describe our methodology for tun-
ing RocksDB parameters and present our experiments and find-
ings (including both positive and negative tuning results) on two
clouds: EC2 and GCE. Overall, we show how tuning RocksDB im-
proved the database replication time for RoF by more than 11x. We
hope that our experience will help others adopt, configure, and tune
RocksDB in order to realize its full performance potential.

CCS Concepts
•Information systems → Key-value stores; Database perfor-
mance evaluation;

Keywords
Databases, Benchmark, Redis, Rocksdb, Key-Value Store, SSD,
NVMe

1. INTRODUCTION
RocksDB is a persistent key-value (KV) store that was specifically
architected for fast storage, mainly flash-based SSDs [1]. Forked
from LevelDB [2], RocksDB provides superior performance [3],
and was designed to be highly flexible in order to facilitate embed-
ding as a storage engine by higher-level applications. Indeed, many

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICCDA ’17 May 19-23, 2017, Lakeland, FL, USA
c© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5241-3/17/05. . . $15.00

http://dx.doi.org/10.1145/3093241.3093278

large-scale production applications use RocksDB to manage stor-
age, leveraging its high performance to mitigate the ever-growing
pressure on the storage-system [4].

Unfortunately, RocksDB flexibility and superior performance come
at a cost: tuning RocksDB is a complex task that involves more than
a hundred parameters with varying levels of inter-dependencies.
Furthermore, “while recent changes have made RocksDB better, it
is much harder to configure than LevelDB”; too often poor results
“are caused by misconfiguration” [5].

The main questions raised when operating with RocksDB are: (1)
which configuration parameters should be used for which hardware
and under what workload? (2) what are the optimal values for these
parameters? (3) are parameters interdependent (i.e., tuning param-
eter a works if and only if parameters b, c and d have certain val-
ues)? (4) will the positive optimization from two different tunings
cumulate or negate when brought together? Last but not least, (5)
what, if any, are the side effects of these optimizations?

This paper seeks to answer these questions by sharing our ex-
perience optimizing RocksDB in the context of Redis-on-Flash
(RoF) [6, 7] – a commercial extension to the popular Redis in-
memory key value store [8]. RoF uses SSDs as a RAM extension
to provide competitive performance to the in-memory Redis vari-
ant while dramatically increasing the effective dataset capacity that
can be stored on a single server. In RoF, hot values are saved in
RAM, while cold-values are saved in SSDs and are managed by
RocksDB (See Section 2.2). Because RocksDB handles all of RoF
accesses to storage, its performance plays a major role in the over-
all system performance, especially for use cases with low access
locality. Since RoF aims to provide competitive performance to
the pure-RAM Redis variant, tuning RocksDB proved to be a key
challenge.

During the process of tuning RocksDB for the RoF case, we ana-
lyzed a large set of parameters and experimented with their impact
on the performance for several different workloads – database repli-
cation, a write-only workload, and a 50-50 read:write workload.
To verify the robustness of our settings across different hardware
setups, we run all experiments in both Amazon Elastic Compute
Cloud (EC2) and Google Compute Engine (GCE). Overall, our tun-
ing reduced the time needed to replicated a node by more than 11x.
The bulk of this paper describes the methodology, tuning process,
and specific parameters settings that lead us to this result.

In Section 3, we describe our methodology and explain the experi-
ments process. Then, in Section 4 we detail the parameters tuning
that had the largest positive effect on performance. We also specif-
ically list parameters for which we expected performance improve-
ment but instead either reduced performance or had other negative

side effects, as we believe this information will be useful to others.
While our experiments were done in the context of RoF, we expect
similar systems to require similar configuration, and hope that our
methodology and results will help reduce the tuning time beyond
the scope of this specific study.

In summary, this paper makes the following contributions:

• We present our RocksDB benchmark results and analysis for
several workloads under the two main clouds: EC2 and GCE,
• We describe our tuning process, the parameters that had the

largest positive effect on performance, and their optimal set-
tings; and
• We describe negative results for tuning efforts that either did

not pan out, reduced performance, or had non-intuitive side
effects.

2. BACKGROUND
This section briefly overviews Redis, Redis on Flash, and
RocksDB. It describes the high-level architecture of these systems
and provides the necessary background for understanding the de-
tails brought up in the rest of the paper.

2.1 Redis
Redis (Remote Dictionary Server) [8] is a popular open-source in-
memory key-value store that provides advanced Key-Value abstrac-
tion. Redis is single-threaded, it handles a command from just one
client at a time in the process’ main thread. Unlike traditional KV
systems where keys are of a simple data type (usually strings), keys
in Redis can function as complex data types such as hashes, lists,
sets, and sorted sets. Furthermore, Redis enables complex atomic
operations on these data types (e.g., enqueuing and dequeuing from
a list, inserting a new value with a given score to a sorted set, etc.).
Redis abstraction and high ingestion speed have proven to be partic-
ularly useful for many latency-sensitive tasks. Consequently, Redis
has gained wide-spread adoption, and is used by a growing number
of companies in production setting [9].

Redis supports high availability and persistence. High availability
is achieved by replicating the data from the master nodes to the
slave nodes and syncing them. When a master process fails, its
corresponding slave process is ready to take over following a pro-
cess called failover. Persistence can be configured by either one of
the following two options: (1) using a point-in-time snapshot file
called RDB (Redis Database), or (2) using a change log file called
AOF (Append Only File). Note that these three mechanisms (AOF
rewrite, RDB snapshot, and replication) rely on a fork to acquire
a point in time snapshot of the process memory and serializing it
(while the main process keeps serving client commands).

2.2 Redis on Flash
In-memory databases like Redis store their data in DRAM. This
makes them fast yet expensive, because (1) DRAM capacity per
node is limited, and (2) DRAM price per GB is relatively high. Re-
dis on Flash (RoF) [6, 7] is a commercial extension to Redis that
uses SSDs as RAM extension to dramatically increase the effec-
tive dataset capacity on a single server. RoF is fully compatible
with the open-source Redis and implements the entire Redis com-
mand set and features. RoF uses the same mechanisms as Redis to
provide high-availability and persistence rather than relying on the
non-volatile property of flash.

RoF keeps hot values in RAM and evicts cold values to the flash
drives. It utilizes RocksDB as its storage engine: all drives are
managed by RocksDB, and accesses to values on the drives are

Figure 1: Illustration of the compaction process

done via RocksDB interface. When a client requests a cold value,
the request is temporally blocked while a designated RoF I/O thread
submits the I/O request to RocksDB. During this time, the main
Redis thread serves incoming requests from other clients.

2.3 RocksDB
RocksDB [10] is an open source key-value store implemented in
C++. It supports operations such as get, put, delete, and scan
of key-values. RocksDB can ingest massive amounts of data. It
uses SST (sorted static tables) files to store the data on NVMes,
SATA SSDs, or spinning disks while aiming to minimize latency.
RocksDB uses bloom filters to determine the presence of a key in
a SST file. It avoids the cost of random writes by cumulating data
to memtables in RAM, and then flushing them to disks in bulks.
RocksDB files are immutable: once created they are never over-
written. Records are not updated nor deleted, and instead new files
are created. This generates redundant data on disk, and requires
regular database compaction. Compaction of files remove dupli-
cate keys and process key deletions to free up space as shown in
Figure 1.

2.3.1 RocksDB Architecture
RocksDB organizes data in different sorted runs called levels. Each
level has a target size. The target size of levels increases by the
same size multiplier (default x10). Therefore, if the target size of
level 1 is 1GB, the target size of level 2, 3, 4 will be 10GB, 100GB,
and 1000GB. A key can appear on multiple levels, but the most up-
to-date value is located higher in the levels hierarchy as older keys
are pushed down during compaction.

RocksDB initially stores new writes in RAM using memtables.
When a memtable is filled up, it is converted to an immutable
memtable and inserted into the flush pipeline at which point a new
memtable is allocated for the following writes. Level 0 is an exact
copy of the memtables. When level 0 fill ups, the data is compacted,
i.e. pushed down to the deeper levels. The compaction process ap-
plies to all levels, and merges files together from level N to level
N+1 as shown in Figure 1.

2.3.2 Amplification factors
We measured the impact of the optimizations by monitoring the
throughput and duration of the experiments under various work-

loads. Additionally, we monitored side effects based on the ampli-
fication factors of RocksDB defined as follows:

• Read Amplification is the ratio between the total number of
bytes read from the disk (including the ones read to process
data compaction) and the bytes read from the KV-store
• Write amplification is the ratio between the total bytes writ-

ten to the disk and the bytes written to KV-storage
• Space amplification is the ratio between the size of the

database files on disk and the KV-storage size.

2.3.3 Memtier benchmark
Memtier benchmark [11] is the benchmark tool we used to send
traffic to Redis. It was developed and open-sourced by Redis
Labs [12]. It can send reads and writes at various ratios, and
implements several different traffic patterns (e.q., sequential, ran-
dom, Gaussian, etc.). The tool maintains a pipeline of Redis com-
mands which sends a new request only when a reply returned. The
memtier command-line tool provides control over multiple aspects
of the request stream, e.g., operations number, read/write ratio,
worker threads number, clients number, value size, etc. At the end
of each run, it reports back aggregated averages of reads through-
put, writes throughput, and their latency.

3. METHODOLOGY
Our initial motivation when optimizing RocksDB, as well as our
primary optimization target was to minimize the overall RoF
database replication time. The replication process is needed to pro-
vide high availability to the master nodes and consists of two steps:
(1) reading the entire dataset from the master server and sending it
over the network to the slave server, and (2) writing the dataset on
the slave server. Once this initial replication process is complete,
all additional changes on the master will be sent to the slave to keep
it in-sync with the master. When (if) a master fails, the slave be-
comes the new master and a new slave will be replicated so that the
database remains fault-tolerant. Hence, Replication time is impor-
tant because (1) during the replication process the cluster operates
at a lower performance point due to the master being busy reading
and sending data to the network, and (2) there is a risk for data loss,
because there is no other data replica available in case of a master
failure.

Using the default RocksDB settings, the time to replicate a 50GB
with a RAM:flash ratio of 10:90 was a whopping 212 minutes. This
is prohibitively long for our use-case and had to be trimmed down
to less than 30 minutes. In Section 4, we describe the steps we took
and the configuration changes we applied to reduce the replication
time to 18 minutes. Since real production systems usually run up
to 50GB on a single Redis server process, we chose that to be our
experiments database size.

While our primary target was to minimize the database replication
time, it was imperative to ensure that our settings do not degrade
the system steady-state performance. Thus, for every optimization
evaluated, we measured performance for four types of workloads:

1. Write-only workload: writing 50M keys of 1KB value for
a total of 50GB. This workload represents the population of
the database.

2. Read-only workload: reads 10% of the dataset.
3. Benchmark: mixed reads and writes workload, with a 50-50

read:write ratio.
4. Database replication: reading 50GB from the master and

writing them on the slave.

Using these workloads, we accept a specific optimization iff it im-
proves the performance of workload 4 and does not degrade the
performance of workloads 1-3.

The first step of the optimization process consists of identifying the
bottleneck. Since the database replication is primarily composed
of reads on the master and writes on the slave, we analyzed which
of these two operations was longer. We run two experiments: (1)
an experiment where all data on the master is stored in RAM, so
drive accesses can only happen as a result of writes on the slave
(this experiment is called pure-ram master), and (2) an experiment
where all the data on the slave is stored in RAM, so drive accesses
can only happen as a result of read on the master (this experiment is
called pure-ram slave). Comparing the duration time of these two
experiments allowed us to work on the optimization of the longest
of the two in order to reach a shorter replication time.

We also analyze the activity on the servers: we examine the run-
time, throughput, and latency following each tuning. We also mon-
itor multiple system metrics: Redis and RocksDB thread loads, the
I/O statistics, the RocksDB level statistics, the amplifications fac-
tors, the slowdowns, and the write stalls. These metrics (described
throughout the paper) help us measure side effects of the optimiza-
tions evaluated, and opt-out tunings that caused performance degra-
dation (see Section 4.2).

Hardware: We run our experiments on Amazon (EC2) and Google
(GCE) clouds. EC2 is the most widely used cloud [13]. We use
powerful instances of type I2.8xLarge with 32 vCPUs, 244GB of
RAM, 8 x 800GB SSD, and a 10GB Network with Enhanced Net-
work Interface (ENI) enabled by default. Additionally, we ran ex-
periments on GCE to take advantage of the NVMe drives which
are currently not available on EC2. Similarly, we use powerful
instances with 32 vCPUs of type Intel Xeon 2.20GHz, 208GB of
RAM, and 8 x 375GB NVMe.

4. EXPERIMENTS AND RESULTS
This section describes our experiments and findings during the opti-
mization process. First, in Section 4.1, we walk through our exper-
iments and detail both the parameters that significantly improved
performance as well as tunings that seemed promising but had a
negative effect. These experiments were run on Amazon EC2.
Then, in Section 4.3, we repeat the tuning process on Google GCE
using NVMe drives.

Throughout this section, words in bold font highlight specific
RocksDB tuning experiments, and words in typewriter font

specify a RocksDB knob name. A summarizing list of all tun-
ing experiments, knob names, and their corresponding performance
impact is given in Table 1.

4.1 Experiments on EC2 with SATA SSD
Our RocksDB baseline configuration uses the stock RocksDB ver-
sion 4.9 with several non-default parameter settings listed in Ta-
ble 2. These were changed during the initial setting stage, and are
considered part of the baseline. Since Redis on Flash uses RAM
for caching we disable the RocksDB cache (there is no need to
cache a value twice). We also disable OS buffers to make sure
writes go to the drives rather than stay in memory buffers. A more-
significant change is the disabling of Write-Ahead-Logging (WAL)
with rocksdb_writeoptions_disable_WAL : WAL has a cost
and no use in our scenario, because Redis on Flash rely on other
mechanisms to provide durability.

Table 1: Parameters and their impact

Parameter Name Original Value New Value Performance Impact
Compaction threads max_background_compactions 8 64 24%
Slowdowns level0_slowdown_writes_trigger 12 24 10%
Stops level0_stop_writes_trigger 20 40 10%
Compaction readahead compaction_readahead_size 0 2MB 300%
Redis IO threads Redis IO threads 8 64 500%
RAID chunks chunk 512k 16k 68%
Filter for hits optimize_filters_for_hits 0 1 7%
Bulk mode prepare_for_bulk_mode 0 1 500%
Block size block_size 4k 16k 60%
Synchronization bytes_per_sec 0MB 2MB 0%

Table 2: Initial configuration

Parameter Value
Memtable budget 128MB
Level 0 slowdown 12
Max open files -1
WAL Disabled
OS buffer Disabled
Cache Disabled

Figure 2: Increase parallelism for the compaction threads
decreases the replication time

4.1.1 Maximizing Parallelism to Remove Bottle-
necks

We started our optimization efforts by reducing the load on threads
with high CPU utilization. We characterized the CPU occupancy
of RocksDB background threads as well as Redis’ I/O threads, and
increased their parallelism when necessary to prevent them from
being the bottleneck.

RocksDB backgrounds threads have two main functions – running
compaction jobs, and running flush jobs (see Section 2.3). As can
be seen in Figure 2, increasing the number of compaction thread
using max_background_compaction from 8 to 64 improved per-
formance by 24%. We observed that more parallelism on the com-
paction threads shortened the compaction cycles and provided a
higher throughput on all the write workloads. We also experi-
mented tuning the number of flush threads (which copy data from
memtables to disk), but increasing their parallelism did not improve
overall performance.

4.1.2 Stabilizing Throughput and Latency
Next, we tried to stabilize the system performance, namely reduce
the server performance variance in terms of both throughput and la-
tency. As can be seen in Figure 3, we initially observed a stop-start
phenomenon of the server throughput, with a peak of 50k ops/sec
lowering to less than 1k ops/sec in cycles of 10 seconds. That be-
havior also resulted in long tail latencies, as a small percentage of
the request experienced very long response times.

As expected, the compaction cycles impact the traffic. They are
triggered when the number of files in level 0 reaches its limit,
i.e., level0_slowdown_writes_trigger (default of 12 files).
When this limit is low, compaction happens too frequently, caus-
ing a disturbance to traffic as we observe in Figure 3. On the
other hand, when the limit is too high, we cumulate a large
compaction debt that eventually causes RocksDB to block all
traffic for several seconds when it exceeds the predefined limit
(level0_stop_writes_trigger). For RoF, it is preferable to
have a slower but stable throughput for the entire duration to pre-
vent both stop-start as well as write stalls (stops). As an example,
Figure 4 shows a rather stable throughput where the ops/sec vary
by only 1-2k ops/sec.

We experimented with different values for the slowdown and stop
tunings. We observed a higher throughput as we increased the val-
ues, and kept on increasing them until they caused a degradation to
other workloads due to the cumulated compaction debt. Results are
shown in Figure 5. The optimal values were a slowdown of 24 and
a stop of 40, providing us with an increased performance of 10%.
Compaction triggered later (e.g., for values 40, 60, etc.) provided
a faster replication but had a negative impact on the throughput of
read-only workloads. With delayed compaction it takes longer to
access data, as bloom filters are larger and not yet compacted.

4.1.3 Generating More Throughput
The compaction readahead knob
(compaction_readahead_size) enables reading large chunks of
compaction inputs during compaction jobs. By default RocksDB
does not use readahead (0MB). We ran experiments with a 2MB
compaction readahead and obtained a 3x shorter replication
time. As previously mentioned, the compaction efficiency has a
significant impact on RocksDB throughput.

Additionally, we obtained a better throughput by tuning the number
of Redis IO threads. Since RocksDB API is synchronous, we
use multiple Redis I/O threads to increase the I/O parallelism. We
found that increasing the number of Redis I/O improves the latency
of read requests, but that the increased contention on the memtables
causes significant reduction in the performance of write request.

Figure 3: Slowdowns and stops limits configured too low generate
a stop-start effect.

Figure 4: Stable throughput

Figure 5: Experiments on slowdowns and stops tunings

Therefore, we dedicate a single I/O thread for handling writes into
RocksDB, and use the rest of the I/O threads to handle the reads
concurrently (a.k.a "one writer"). The improvement obtained was
a factor of 5.

Figure 6: Runtime as a variance of RAID configuration

Since RoF deployments commonly use multiple storage drives to
increase the available storage bandwidth, we also experimented
with RAID-specific setting. RoF (and RocksDB) employ software
RAID-0 to create a striped volume, and we experimented with the
effect of different chunk sizes (stripe sizes) on overall performance.
As can be seen in Figure 6, smaller RAID chunks increase the disk
access parallelism and thus performance. Therefore, we changed
the default from 512KB to 16KB, further improving performance
by 68%. Note that while RocksDB tuning guide suggests using
larger chunk sizes [14], our experience was the opposite: smaller
chunk sizes gave better performance.

Lastly, since RoF keeps a map of all keys and their location
in RAM, requests to RocksDB never miss: requests to unavail-
able keys are handled by RoF, and only requests to data that
is known to be present on disk are forwarded to the RocksDB
subsystem. Consequently, we enabled a designated RocksDB
bloom filter that is specifically optimized for this use case: op-

timize_filters_for_hits. RocksDB implements bloom filters
for every SST file in order to quickly check whether a given key
has a copy in the file. The specific optimization removes the filters
from the bottommost levels, because once a request reaches that
level, the value is guaranteed to be there. This optimization had a
positive impact of 7% on the replication experiments.

4.1.4 Read Speed
When replicating a database, the master sends a copy of the dataset
to the slave. The master needs to read all values from either its
RAM or its drives depending on where specific values are located.
There are two approaches for reading the data from the drives. The
first method uses RocksDB iterator to read all of RocksDB database
sequentially. The second method reads only values that do not
have a copy in RAM, thus reducing the amount of total data read
but issuing random reads to the drive. The exact tradeoff between
these two methods is mainly a functions of (1) the performance
of RocksDB under these two scenarios, and (2) the disk speed for
sequential reads and random reads.

Figure 7 compares these two approaches by plotting the database
replication time as a function of the percentage of keys residing
in flash (out of all keys in the database). A higher x-axis value
means that a larger portion of the values reside in flash rather than
in RAM. Since the sequential read approach always reads the en-
tire RocksDB dataset, its replication time stays roughly constant
across the experiment range (the blue line). Conversely, since the
random read approach access only the necessary data on the drive,
its replication time grows linearly with the percentage of values

Figure 7: Comparison of replication time with random and
sequential reads as a variation of the percentage of values in flash.

residing on the drives. As can be seen in the figure, the random
read method is preferable only when a major portion of the data
reside in RAM – 85% and up in our experiments. Sequential reads
benefits from the data readahead configuration which reads larger
chunks of input data and speeds up sequential reads. These results
were consistent across different database sizes as well as different
object sizes. Consequently, we use the sequential read approach for
replication.

4.2 Negative Results
Many of the parameters we experimented with were not adopted,
either because they did not improve the replication time or because
they had negative side effects. In this Section we list three of these
tuning efforts that either proved to be counter-intuitive, or caused
surprising side effects.

One of our initial efforts involved the bulk load mode
(prepareforbulkload). Enabling this mode improved replica-
tion time by 5x. However, bulk load mode has side effects that
make reads prohibitively slow, because it also disables compaction.
When the database is not compacted, there are many more SST files
and reads take much longer to access. We tried to fix the problem
by disabling the bulk mode at the end of the replication and launch-
ing a manual compaction to restore the database to a useful state,
but since manual compaction is a single-threaded process, the pro-
cess was taking a long time to complete: longer than the replica-
tion time. As an alternative, we launched an automatic compaction
which is multithreaded, but subsequent reads were still too slow.

Surprisingly, manual compaction and automatic compaction do not
have the same compaction result nor the same duration. The first
one takes too long to complete, and the second one produces slow
read access as it does not run a full compaction of all levels. Note
that we encountered a similar compaction debt in Section 4.1.2
as compaction was delayed by the slowdown configuration. Bulk
mode is composed of many different tuning parameters (13), which
we evaluated separately to see if we could get the benefits while re-
ducing the tolls. However, since disabling compaction proved to be
the main reason behind the performance improvement we ended up
not using this option.

Full synchronization is not mandatory in RoF because we use flash
as a RAM extension (volatile). Therefore, we aimed to save the
synchronization costs of fsync calls. We configured synchroniza-
tion every 2MB (non-frequent) using bytes_per_sync. Surpris-

ingly, we observed no improvement. We investigated this using the
dd tool which writes data to disks: we compared the running time
writing 50GB of generated data with and without synchronization
and observed a faster performance of over 2x without synchro-
nization. We were puzzled not to see a similar trend in the repli-
cation experiments. We assumed that the writes were cached and
therefore we did not see the synchronization savings, but looking at
meminfo we observed that the data was not cached. We also looked
at the individual devices that compose the RAID and their IOPS,
and saw they did not decrease either. Last, we confirmed that all
calls to the various syncs were not taking place using strace. This
counter-intuitive observation remains somewhat a mystery.

Lastly, we tuned the block_size parameter. Each SST file con-
tains an index with all its blocks. Increasing the block size reduces
the number of index entries for each file, but requires reading more
bytes to access a value as the blocks are larger (see Section 2.3.2 on
read amplification). Increasing the block size also decreases mem-
ory usage because the indices stored in RAM are larger. The default
block size is 4KB. When we increased the block size to 16KB, we
obtained a 60% time reduction. Unlike many other knobs which
can be changed during runtime, the block size cannot be reverted
and since we observed a negative impact on the reads performance
(as explained above), we ended up not including this tuning.

4.3 Experiments on GCE with NVMe SSD
The experience gained tuning RocksDB on EC2 helped us plan our
experiments on GCE. First, we worked on RAID optimization. We
ran a sweep of experiments on the chunk size and concluded that
16KB was the optimal value with a faster replication time of 41%.
The same chunk size was used for the SSD drives on EC2.

The default level 0 slowdown (12) and stop (20) delayed writes
unnecessarily. As soon as we reached 12 files on level 0, a slow-
down reduced the throughput significantly: from 60k to 600 oper-
ations per second, up until the compaction process completed and
files moved from level N to level N+1. In order to avoid the phe-
nomenon of stop-start on the system, we increased the slowdown
to 20 and stop to 24 and observed a performance improvement of
15% (similar to EC2).

Additionally, we integrated tunings such as optimize filters for hits.
We also added more RocksDB compaction threads and Redis IO
threads, configured one writer to the memtables, and increased the
data readahead. With all these changes cumulated, we obtained a
replication time of 12 minutes and 50 seconds on GCE. Note that
the same database replication size took 18 minutes on EC2 with the
same RocksDB settings. However, since these are different clouds
with different hardware and different storage type – SATA-SSD on
EC2 and NVMe on GCE – we were expecting a faster replication
time on GCE.

5. RELATED WORK
While other storage engines are available [15, 16, 17], RocksDB
has a better performance and is widely used. RocskDB tun-
ing guide [18] provides a basic configuration direction for
RocksDB [10], which we used for our baseline configuration. As
we show in the paper, further tuning can considerably improve per-
formance (by 11x in our example).

Krishnamoorthy and Choi [19] experimented the tuning of
RocksDB for NVMe SSDs. For the best of our knowledge, this is
the closest work to the evaluation presented in this paper. However,
that analysis was done in the context of stress testing RocksDB,
while we optimize a full stack real-world use-case with RocksDB

being the underlining engine. Consequently, that work differs both
in its tuning process and its conclusions.

Similar to Redis on Flash, several other Redis extensions use flash
drives to extend the capabilities of Redis. An Intel project [20],
forked from Redis, rely on the non-volatility property of flash
drives to provide persistence. The motivation is to eliminate the
synchronization costs of disk backups by writing to the non-volatile
flash drives instead of writing to the append-only-file (AOF). Upon
a node failure, the machine is repaired and brought back on with
its non-volatile flash data. This approach does not work on the
cloud as machines cannot be reused/repaired. Redis Naive-Disk-
Store(NDS) [21] uses LMDB [17] to manage values on local drives.
The data is periodically flushed, so in case of a crash, users loose
only updates that occur since the last flush. It does not keep the
key names in RAM and does not support persistence, replication,
eviction, and scan.

6. CONCLUSIONS
As the number of applications using RocksDB to manage storage
continues to grow, RocksDB is quickly becoming the go-to storage-
engine choice. However, its flexibility and superior performance
come at a cost: tuning RocksDB is a complex task, and as shown
in this paper, a highly tuned configuration can outperform a basic
setup by an order of magnitude.

In this paper we used Redis on Flash – a commercial extension
of the popular Redis key-value store – as a practical case-study
for tuning RocksDB. We described the methodology, tuning pro-
cess, and specific changes to the RocksDB settings that improved
RoF overall performance by more than 11x, as well as the exper-
iments that lead to negative results or to unexpected side effects.
While different use-cases will differ in the exact optimal settings,
we hope that our experience will help others optimize RocksDB,
both in terms of improving overall results, as well as in reduc-
ing the required development time. The performance boost from
a highly-tuned RocksDB engine is definitely worth the effort.

7. REFERENCES
[1] Siying Dong. RocksDB: Key-Value Store Optimized for

Flash-Based SSD.

https://www.youtube.com/watch?v=xbR0epinnqo.
[2] RocksDB and LevelDB.

http://rocksdb.org/blog/2016/01/29/compaction_pri.html.
[3] Paul Dix. Benchmarking LevelDB vs RocksDB. https:

//www.influxdata.com/benchmarking-leveldb-vs-rocksdb-
vs-hyperleveldb-vs-lmdb-performance-for-influxdb/.

[4] RocksDB users. https:
//github.com/facebook/rocksdb/blob/master/USERS.md.

[5] Mark Callaghan blog. http://smalldatum.blogspot.co.il/2014/
07/benchmarking-leveldb-family.html, July 7, 2014.

[6] Redis on Flash documentation. https:
//redislabs.com/redis-enterprise-documentation/rlecflash.

[7] Redis on Flash. https://redislabs.com/rlec-flash.
[8] Redis. http://redis.io/.
[9] Redis Users. http://techstacks.io/tech/redis.

[10] RocksDB website. http://rocksdb.org/.
[11] Memtier benchmark.

https://redislabs.com/blog/memtier_benchmark-a-high-
throughput-benchmarking-tool-for-redis-memcached.

[12] Redis Labs. https://redislabs.com/.
[13] Gartner. Magic Quadrant. https://www.gartner.com/doc/

reprints?id=1-2G2O5FC&ct=150519.
[14] RocksDB FAQ.

https://github.com/facebook/rocksdb/wiki/RocksDB-FAQ.
[15] Kyoto Cabinet. http://fallabs.com/kyotocabinet/.
[16] LevelDB. http://leveldb.org/.
[17] Lightning Memory Mapped Database.

https://lmdb.readthedocs.io.
[18] Facebook. RocksDB Tuning Guide. https://github.com/

facebook/rocksdb/wiki/RocksDB-Tuning-Guide.
[19] Praveen Krishnamoorthy and Choi Changho. Fine-tuning

RocksDB for NVMe SSD. https:
//www.percona.com/live/data-performance-conference-
2016/sites/default/files/slides/Percona_RocksDB_v1.3.pdf.

[20] Intel. Redis with persistent memory. https:
//github.com/pmem/redis#redis-with-persistent-memory.

[21] Redis Naive Disk Storage.
https://github.com/mpalmer/redis/blob/nds-2.6.

